拨号18861759551

你的位置:首页 > 产品展示 > 光纤器件 > 光纤跳线 >Thorlabs光纤部分反射器

产品详细页
Thorlabs光纤部分反射器

Thorlabs光纤部分反射器

  • 产品型号:
  • 更新时间:2023-12-19
  • 产品介绍:Thorlabs光纤部分反射器可以在光纤中将1260 - 1620纳米波长的光波反射48 ± 2%。透射光从镀膜接头中出射,而反射光则直接返回光纤当中。其部分反射末端用一个光滑的黑色护套进行标记,并标有部件号。镀膜末端用于自由空间应用(即准直),如果与其它接头末端接触会损坏镀膜.
  • 厂商性质:代理商
  • 在线留言

产品介绍

品牌Thorlabs价格区间面议
组件类别光学元件应用领域电子,航天

Thorlabs光纤部分反射器

Thorlabs的光纤部分反射器设计用于将部分入射光向后反射回到输入端,同时将剩下的光透射出输出端。镀分束膜的跳线利用一个接头端面的分束镀膜反射,非常适用于光纤到自由空间的应用,而嵌入式部分反射器利用内部的反射镀膜,非常适用于全光纤应用。

 

光纤跳线,镀分束膜

Single Mode or Multimode Fiber Optic 50:50 Partial Reflector

Coating Ranges from 1260 - 1620 nm

FC/PC or FC/APC Connectors

Thorlabs光纤部分反射器特性

单模或多模光纤部分反射器

镀膜一端对于1260 - 1620纳米的波长可以实现48 ± 2%的反射率

适合用于高功率为300毫瓦的激光

提供带有FC/PC或FC/APC接头的单模分束器

接线长1米

Thorlabs公司的光纤部分反射器可以在光纤中将1260 - 1620纳米波长的光波反射48 ± 2%(请参看右图)。透射光从镀膜接头中出射,而反射光则直接返回光纤当中。其部分反射末端用一个光滑的黑色护套进行标记,并标有部件号(请参看上图)。镀膜末端用于自由空间应用(即准直),如果与其它接头末端接触会损坏镀膜。当该反射器与一个光纤环形器偶合时,它可以作为分束装置,并且不需要将光束偶合到自由空间中,这样就不需要使用非偏振分束立方体(请参看应用标签了解更多细节)。

这些反射器接有后长1米的光纤,可以是单模(SM)或多模(MM)光纤。SM部分反射器带有FC/PC或FC/APC接头。由于部分反射末端的插芯经过镀膜处理,因此我们建议将该光纤末端与一个光纤准直器配合使用。镀膜接头末端不应该与匹配套管一起使用,这样会对镀膜造成损坏。对于全光纤应用,请看我们的嵌入式部分反射器

每一个跳线都包含两个保护帽用来隔离灰尘和脏物。额外用于FC/PC和FC/APC接头的CAPF塑料光纤帽和CAPFM金属螺纹光纤帽可以单独购买。

跳线可以通过匹配套管进行偶合,它可以将后向反射小化,并保证光纤的可连接末端之间能够有效对准。它们很实用与这些光纤的未镀膜接头配合使用。我们还提供10:90、30:70、70:30和90:10的定制反射:透射镀膜。请联系Thorlabs公司的技术支持探讨更多定制选项。

清洁镀增透膜的接头端且不损坏镀膜的方法有好几种。将压缩空气轻轻喷在接头端是比较理想的做法。其他方法包括使用浸有异丙醇或甲醇的无绒光学擦拭纸或FCC-7020光纤接头清洁器轻轻擦拭。但是请不要使用干的擦拭纸,因为可能会损坏增透膜涂层。

这些光纤部分反射器上的镀膜接头可以通过光滑的黑色护套进行辨认。

    50:50光纤部分反射器的反射率

     

    Coated Patch Cables Selection Guide

    Single Mode AR-Coated Patch Cables

    TEC Single Mode AR-Coated Patch Cables

    Polarization-Maintaining AR-Coated Patch Cables

    Multimode AR-Coated Patch Cables

    HR-Coated Patch Cables

    Beamsplitter-Coated Patch Cables

     

     

    应用

    光纤部分反射器在产生诸如非偏振分束器、激光谐振腔和干涉仪等各种器件时十分有效。这些光纤反射器可以将48 ± 2%的光反射回光纤中,同时让剩余的光从镀膜接头出射。该特性在非偏振分束器尤为有效,可以让用户在自由空间偶合时不需要使用非偏振分束立方体就可以对光源进行分光。图1显示了由一个光纤环形器和一个光纤部分反射器构成的这种简单装置。其中,光从环形器的端口1入射,部分反射器偶合到端口2上。输入光从端口1传递到端口2;这时,大约50%的光从镀膜末端出射,剩余的光束将被反射回光纤中,并从端口3出射。

    图1:全光纤非偏振分束器

      图2:一个用部分反射器构成的全光纤法布里-珀罗涉仪

      图2显示了这些器件如何用于构建光纤激光器的实例。其中,一个光纤后向反射器置于掺饵光纤的末端,让光朝着入射光方向反射回光纤中。用一个WDM将输入和激光输出光束导向适当的光路中,输出光路中的部分反射器为激光谐振腔提供反馈信号。

       

      多模光纤教程

      在光纤中引导光

      光纤属于光波导,光波导是一种更为广泛的光学元件,可以利用全内反射(TIR)在固体或液体结构中限制并引导光。光纤通常可以在众多应用中使用;常见的例子包括通信、光谱学、照明和传感器。

      比较常见的玻璃(石英)纤维使用一种称之为阶跃折射率光纤的结构,如右图所示。这种光纤的纤芯由一种折射率比外面包层高的材料构成。在光纤中以临界角入射时,光会在纤芯/包层界面产生全反射,而不会折射到周围的介质中。为了达到TIR的条件,发射到光纤中入射光的角度必须小于某个角度,即接收角,θacc。根据斯涅耳定律可以计算出这个角:

      其中,ncore为纤芯的折射率,nclad为光纤包层的折射率,n为外部介质的折射率,θcrit为临界角,θacc为光纤的接收半角。数值孔径(NA)是一个无量纲量,由光纤制造商用来确定光纤的接收角,表示为:

      对于芯径(多模)较大的阶跃折射率光纤,使用这个等式可以直接计算出NA。NA也可以由实验确定,通过追踪远场光束分布并测量光束中心与光强为大光强5%的点之间的角度即可;但是,直接计算NA得出的值更为准确。

      光纤的全内反射

      光纤中的模式数量

      光在光纤中传播的每种可能路径即为光纤的导模。根据纤芯/包层区域的尺寸、折射率和波长,单光纤内可支持从一种到数千种模式。而其中常使用两种为单模(支持单导模)和多模(支持多种导模)。在多模光纤中,低阶模倾向于在空间上将光限制在纤芯内;而高阶模倾向于在空间上将光限制在纤芯/包层界面的附近。

      使用一些简单的计算就可以估算出光纤支持的模(单模或多模)的数量。归一化频率,也就是常说的V值,是一个无量纲的数,与自由空间频率成比例,但被归为光纤的引导属性。V值表示为:

      其中V为归一化频率(V值),a为纤芯半径,λ为自由空间波长。多模光纤的V值非常大;例如,芯径为Ø50 µm、数值孔径为0.39的多模光纤,在波长为1.5 µm时,V值为40.8。

      对于具有较大V值的多模光纤,可以使用下式近似计算其支持的模式数量:

      上面例子中,芯径为Ø50 µm、NA为0.39的多模光纤支持大约832种不同的导模,这些模可以同时穿过光纤。

      单模光纤V值必须小于截止频率2.405,这表示在这个时候,光只耦合到光纤的基模中。为了满足这个条件,单模光纤的纤芯尺寸和NA要远小于同波长下的多模光纤。例如SMF-28超单模光纤的标称NA为0.14,芯径为Ø8.2 µm,在波长为1550
      nm时,V值为2.404。

      衰减来源

      光纤损耗,也称之为衰减,是光纤的特性,可以通过量化来预测光纤装置内的总透射功率损耗。这些损耗来源一般与波长相关,因光纤的使用材料或光纤的弯曲等而有所差异。常见衰减来源的详情如下:

      吸收标准光纤中的光通过固体材料引导,因此,光在光纤中传播会因吸收而产生损耗。标准光纤使用熔融石英制造,经优化可在波长1300 nm-1550 nm的范围内传播。波长更长(>2000
      nm)时,熔融石英内的多声子相互作用造成大量吸收。使用氟化锆、氟化铟等氟氧物玻璃制造中红外光纤,主要是因为它们处于这些波长范围时损耗较低。氟化锆、氟化铟的多声子边分别为~3.6 µm和~4.6 µm。

      光纤内的污染物也会造成吸收损耗。其中一种污染物就是困在玻璃纤维中的水分子,可以吸收波长在1300 nm和2.94 µm的光。由于通信信号和某些激光器也是在这个区域里工作,光纤中的任意水分子都会明显地衰减信号。

      玻璃纤维中离子的浓度通常由制造商控制,以便调节光纤的传播/衰减属性。例如,石英中本来就存在羟基(OH-),可以吸收近红外到红外光谱的光。因此,羟基浓度较低的光纤更适合在通信波长下传播。而羟基浓度较高的光纤在紫外波长范围时有助于传播,因此,更适合对荧光或UV-VIS光谱学等应用感兴趣的用户。

      散射对于大多数光纤应用来说,光散射也是损耗的来源,通常在光遇到介质的折射率发生变化时产生。这些变化可以是由杂质、微粒或气泡引起的外在变化;也可以是由玻璃密度的波动、成分或相位态引起的内在变化。散射与光的波长呈负相关关系,因此,在光谱中的紫外或蓝光区域等波长较短时,散射损耗会比较大。使用恰当的光纤清洁、操作和存储存步骤可以尽可能地减少光纤*的杂质,避免产生较大的散射损耗。

      弯曲损耗因光纤的外部和内部几何发生变化而产生的损耗称之为弯曲损耗。通常包含两大类:宏弯损耗和微弯损耗。

      宏弯损耗一般与光纤的物理弯曲相关;例如,将其卷成圈。如右图所示,引导的光在空间上分布在光纤的纤芯和包层区域。以某半径弯曲光纤时,在弯曲外半径的光不能在不超过光速时维持相同的空间模分布。相反,由于辐射能量会损耗到周边环境中。弯曲半径较大时,与弯曲相关的损耗会比较小;但弯曲半径小于光纤的推荐弯曲半径时,弯曲损耗会非常大。光纤可以在弯曲半径较小时进行短时间工作;但如果要长期储存,弯曲半径应该大于推荐值。使用恰当的储存条件(温度和弯曲半径)可以降低对光纤造成损伤的几率;FSR1光纤缠绕盘设计用来大程度地减少高弯曲损耗。

      微弯损耗由光纤的内部几何,尤其是纤芯和包层发生变化而产生。光纤结构中的这些随机变化(即凸起)会破坏全内反射所需的条件,使得传播的光耦合到非传播模中,造成泄露(详情请看右图)。与由弯曲半径控制的宏弯损耗不同,微弯损耗是由制造光纤时在光纤内造成的缺陷而产生。

       

      宏弯损耗造成的衰减

      微弯损耗造成的衰减

      包层模虽然多模光纤中的大多数光通过纤芯内的TIR引导,但是由于TIR发生在包层与涂覆层/保护层的界面,在纤芯和包层内引导光的高阶模也可能存在。这样就产生了我们所熟知的包层模。这样的例子可在右边的光束分布测量中看到,其中体现了包层模包层中的光强比纤芯中要高。这些模可以不传播(即它们不满足TIR的条件),也可以在一段很长的光纤中传播。由于包层模一般为高阶模,在光纤弯曲和出现微弯缺陷时,它们就是损耗的来源。通过接头连接两个光纤时包层模会消失,因为它们不能在光纤之间轻松耦合。

      由于包层模对光束空间轮廓的影响,有些应用(比如发射到自由空间中)中可能不需要包层模。光纤较长时,这些模会自然衰减。对于长度小于10 m的光纤,消除包层模的一种办法就是将光纤缠绕在半径合适的芯轴上,这样能保留需要的传播模式。

      在FT200EMT多模光纤与M565F1 LED的光束轮廓中,展现了包层而不是纤芯引导的光。

       

      入纤方式

      多模光纤未充满条件对于在NA较大时接收光的多模光纤来说,光耦合到光纤的的条件(光源类型、光束直径、NA)对性能有着极大影响。在耦合界面,光的光束直径和NA小于光纤的芯径和NA时,就出现了未充满的入纤条件。这种情况的常见例子就是将激光光源发射到较大的多模光纤。从下面的图和光束轮廓测量可以看出,未充满时会使光在空间上集中到光纤的中心,优先充满低阶模,而非高阶模。因此,它们对宏弯损耗不太敏感,也没有包层模。这种条件下,所测的插入损耗也会小于典型值,光纤纤芯处有着较高的功率密度。

      展示未充满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。

      多模光纤过满条件在耦合界面,光束直径和NA大于光纤的芯径和NA时就出现了过满的情况。实现这种条件的一个方法就是将LED光源的光发射到较小的多模光纤中。过满时会将整个纤芯和部分包层裸露在光中,均匀充满低阶模和高阶模(请看下图),增加耦合到光纤包层模的可能性。高阶模比例的增加意味着过满光纤对弯曲损耗会更为敏感。在这种条件下,所测的插入损耗会大于典型值,与未充满光纤条件相比,会产生较高的总输出功率。

      展示过满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。

      多模光纤未充满或过满条件各有优劣,这取决于特定应用的要求。如需测量多模光纤的基准性能,Thorlabs建议使用光束直径为光纤芯径70-80%的入纤条件。过满条件在短距离时输出功率更大;而长距离(>10 - 20 m)时,对衰减较为敏感的高阶模会消失。

      损伤阀值

      激光诱导的光纤损伤

      以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的大功率始终受到这些损伤机制的小值的限制。

      虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在的大功率水平以下操作光纤元件;如果有元件并未大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持techsupport-cn@thorlabs.com。

      空气-玻璃界面的损伤

      空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。

      损伤的光纤端面

      未损伤的光纤端面

      所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。

      这是可以入射到光纤端面且没有损伤风险的大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。

      这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。

      插芯/接头终端相关的损伤机制

      有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。

      与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。

      为了大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。

      曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。大功率适用性受到所有相关损伤机制的低功率水平限制(由实线表示)。

      单模50:50部分反射器

      Quick Links

      Damage at the Air /  Glass Interface

      Intrinsic Damage  Threshold

      Preparation and  Handling of Optical Fibers

        

      Estimated Optical Power Densities on Air / Glass Interfacea

      Type

      Theoretical Damage Thresholdb

      Practical Safe Levelc

      CW
       (Average Power)

      ~1 MW/cm2

      ~250 kW/cm2

      10 ns Pulsed
       (Peak Power)

      ~5 GW/cm2

      ~1 GW/cm2

        

       

      Item #

      Fiber

      Coating Wavelength
       Rangeb

      MFDc

      Cladding
       Diameter

      Coating
       Diameter

      NA

      Connector

      P1-SMF28ER-50-1a

      SMF-28  Ultra

      1260 - 1620  nm

      9.2 ± 0.4  µm @ 1310 nm

      10.4 ± 0.5  µm @ 1550 nm

      125 ± 0.7  µm

      242 ± 5 µm

      0.14

      FC/PC

      P5-SMF28ER-50-1a

      FC/APC

      a.     所有规格都基于无端接头的光纤数据

      b.     这些光纤上使用的部分反射率镀膜专为1260 - 1620 nm的波长而设计。本跳线中所用的SMF-28 Ultra光纤的工作波长范围是1260 - 1625 nm

      c.     模场直径(MFD)是标称计算值,在工作波长下通过典型NA值和光纤的截止波长进行估算

      产品型号

      公英制通用

      P1-SMF28ER-50-1

      Customer Inspired! 单模50:50部分反射器,1260 - 1620纳米,FC/PC接头

      P5-SMF28ER-50-1

      单模50:50部分反射器,1260  - 1620纳米,FC/APC接头

      多模50:50部分反射器

      Item #

      Fiber

      Coating Wavelength
       Rangeb

      Core Diameter

      Cladding
       Diameter

      Coating
       Diameter

      NA

      Connector

      M105L01-50-1a

      FG105LCA

      1260 - 1620 nm

      105 µm ± 2%

      125 ±1 µm

      250 µm ± 5%

      0.22 ± 0.02

      FC/PC

      a.     所有规格数据都基于未端接光纤

      b.     这些光纤上采用的部分反射镀膜设计用于1260 - 1620纳米的波长。尽管光纤的工作波长范围为400 - 2400纳米,但该镀膜限制了部分反射器的工作波长范围。

      产品型号

      公英制通用

      M105L01-50-1

      多模50:50部分反射器,1260  - 1620纳米,FC/PC接头

      嵌入式部分反射器

      ·         Partial Reflectors with     Internal Reflective Coating

      ·         1450 nm - 1650 nm     Wavelength Range

      ·         67:33 or 10:90 Reflection     Ratio (R:T)

      ·         Available with FC/PC or     FC/APC Connectors

      特性

      ·         部分反射器,用于嵌入式光纤应用

      ·         内部镀有反射膜,反射率(R:T)为67:33或10:90

      ·         波长范围1450 nm - 1650     nm

      ·         提供具有2.0 mm窄键FC/PC或FC/APC接头的版本

      Thorlabs的嵌入式部分反射器用于反射部分输入光;即一部分光反射回到输入端,而另一部分则透射到输出端。通过分离输入光,然后利用里面镀的反射膜,将光引回输入端。与我们的镀分束膜的光纤跳线不同,它的接头端都未镀膜;因此,这些部分反射器可以连接到其他光纤跳线,*实现嵌入式操作。与单模光纤环形器一起使用时,这些反射器可以作为全光纤分束装置(请看应用标签),非常适合往返延迟计时等应用。

      这些部分反射器的单模波长范围为1450 nm - 1650 nm,反射率为67:33或10:90。反射率(R:T)是指反射光与透射光之比,不包括由于吸收而在装置中损失的光。白色端口用作输入端;请注意,这些部分反射器不能反方向使用。库存提供的部分反射器带有FC/PC或FC/APC接头,如下表所示。光纤引线包裹在Ø900 µm Hytrel®套管中,引线长为0.8 m。我们也提供具有其他波长、光纤类型或R:T 比的自定义配置;详情请联系技术支持。

      每个部分反射器包含两个防护盖,可以防止插芯端受到灰尘或其他损害。其他用于FC/PC-和FC/APC-端的CAPF塑料防尘盖和CAPFM金属螺纹防尘盖单独出售。我们也提供匹配套管,可以耦合光纤跳线,大程度减少背向反射,确保带接头的纤芯准确对准。

      应用

      全光纤分束

      部分反射器可用于制造多种装置,比如分束器、激光腔和干涉仪。这些光纤将部分光反射回光纤,将剩下的光透射到输出光纤接头。

      这种特性尤其适合制造全光纤分束器;用户使用分束立方,且无需自由空间耦合,就可以使光分束。图 1展现了由光纤环形器和部分反射器组成的简单装置。光从环形器的Port 1输入,通过部分反射器耦合到Port 2。输入光从Port 1耦合到Port 2;大约有33%的光通过光纤输出端透射,剩下的光返回到输入端,被环形器引导Port 3。

      图 1:全光纤分束装置

      反射率(R:T)67:33

      tem #a

      Center Wavelength

      Bandwidth

      Reflectanceb (Click  for Plot)

      Transmission(Click  for Plot)

      Reflection Ratiod

      Fiber Typed

      Termination

      RW1550R3F

      1550 nm

      ±100 nm

      45.0 ± 4.5%

      (3.5 ± 0.4 dB)

      22.5 ± 2.5%

      (6.5 ± 0.5 dB)

      67:33

      SMF-28e+

      FC/PC

      RW1550R3A

      FC/APC

      a.    所有值的测量条件为在室温环境下,带宽范围内,以白色端作为输入端,且带接头。

      b.    在白色端的总反射输出

      c.    在红色端的总透射输出

      d.    反射输出与透射输出之比

      e.    根据要求可提供其他光纤类型;详情请联系技术支持。

      产品型号

      公英制通用

      RW1550R3F

      嵌入式部分反射器,1550 ± 100 nm,R:T为67:33,FC/PC接头

      RW1550R3A

      嵌入式部分反射器,1550 ± 100 nm,R:T为67:33,FC/APC接头

      反射率(R:T)10:90

      tem #a

      Center Wavelength

      Bandwidth

      Reflectanceb (Click  for Plot)

      Transmission(Click  for Plot)

      Reflection Ratiod

      Fiber Typed

      Termination

      RW1550R2F

      1550 nm

      ±100 nm

      7.2 ± 2.7%

      (11.4 ± 2.0 dB)

      65.0 ± 5.0%

      (1.9 ± 0.1 dB)

      10:90

      SMF-28e+

      FC/PC

      RW1550R2A

      FC/APC

      a.    所有值的测量条件为在室温环境下,带宽范围内,以白色端作为输入端,且带接头。

      b.    在白色端的总反射输出

      c.    在红色端的总透射输出

      d.    反射输出与透射输出之比

      e.    根据要求可提供其他光纤类型;详情请联系技术支持。

      产品型号

      公英制通用

      RW1550R2F

      Customer Inspired! 嵌入式部分反射器,1550 ± 100 nm,R:T为10:90,FC/PC接头

      RW1550R2A

      Customer Inspired! 嵌入式部分反射器,1550 ± 100 nm,R:T为10:90,FC/APC接头

      损伤的光纤端面

      留言框

      • 产品:

      • 您的单位:

      • 您的姓名:

      • 联系电话:

      • 常用邮箱:

      • 省份:

      • 详细地址:

      • 补充说明:

      • 验证码:

        请输入计算结果(填写阿拉伯数字),如:三加四=7

      联系我们

      地址:江苏省江阴市人民东路1091号1017室 传真:0510-68836817 Email:sales@rympo.com
      24小时在线客服,为您服务!

      版权所有 © 2024 江阴韵翔光电技术有限公司 备案号:苏ICP备16003332号-1 技术支持:化工仪器网 管理登陆 GoogleSitemap

      在线咨询
      QQ客服
      QQ:17041053
      电话咨询
      0510-68836815
      关注微信